You are here

DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard

TitleDNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard
Publication TypeJournal Article
Year of Publication2018
AuthorsPanahi Y., Fattahi A., Nejabati H.R, Abroon S., Latifi Z., Akbarzadeh A., Ghasemnejad T.
JournalEnviron Toxicol Pharmacol
Volume58
Pagination230-236
Date PublishedMar
ISBN Number1382-6689 (Linking)
Accession Number29428683
Keywords*DNA Repair, Alkylating Agents/*toxicity, Animals, Chemical Warfare Agents/*toxicity, DNA Damage, DNA repair, Humans, Mustard Gas/*toxicity, Sulfur Mustard
Abstract

Sulfur mustard (SM) is an alkylating agent that causes severe damages to the skin, eyes, and the respiratory system. DNA alkylation is one of the most critical lesions that could lead to monoadducts and cross-links, as well as DNA strand breaks. In response to these adducts, cells initiate a series of reactions to recruit specific DNA repair pathways. The main DNA repair pathways in human cells, which could be involved in the DNA SM-induced DNA damages, are base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ). There is, thus, a need for a short review to clarify which damage caused by SM is repaired by which repair pathway. Increasing our knowledge about different DNA repair mechanisms following SM exposure would lay the first step for developing new therapeutic agents to treat people exposed to SM. In this review, we describe the major DNA repair pathways, according to the DNA adducts that can be caused by SM.

URLhttps://www.ncbi.nlm.nih.gov/pubmed/29428683
DOI10.1016/j.etap.2018.01.012
Short TitleDNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer