You are hereNews

News


World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung.

Paul J. Lioy, Ph.D. - Mon, 06/26/2017 - 14:00

Related Articles

World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung.

Exp Mol Pathol. 2017 Feb;102(1):50-58

Authors: Sunil VR, Vayas KN, Fang M, Zarbl H, Massa C, Gow AJ, Cervelli JA, Kipen H, Laumbach RJ, Lioy PJ, Laskin JD, Laskin DL

Abstract
Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.

PMID: 27986442 [PubMed - indexed for MEDLINE]

Categories: Publications from UCDPER Members

Anti-TNFα Therapy in Inflammatory Lung Diseases bn.

Jeffrey D. Laskin, Ph.D. - Mon, 06/26/2017 - 14:00

Related Articles

Anti-TNFα Therapy in Inflammatory Lung Diseases bn.

Pharmacol Ther. 2017 Jun 19;:

Authors: Malaviya R, Laskin JD, Laskin DL

Abstract
Increased levels of tumor necrosis factor (TNF) α have been linked to a number of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), sarcoidosis, and interstitial pulmonary fibrosis (IPF). TNFα plays multiple roles in disease pathology by inducing an accumulation of inflammatory cells, stimulating the generation of inflammatory mediators, and causing oxidative and nitrosative stress, airway hyperresponsiveness and tissue remodeling. TNF-targeting biologics, therefore, present a potentially highly efficacious treatment option. This review summarizes current knowledge on the role of TNFα in pulmonary disease pathologies, with a focus on the therapeutic potential of TNFα-targeting agents in treating inflammatory lung diseases.

PMID: 28642115 [PubMed - as supplied by publisher]

Categories: Publications from UCDPER Members

Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

Jeffrey D. Laskin, Ph.D. - Fri, 06/23/2017 - 14:00

Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

Placenta. 2017 Jul;55:29-36

Authors: Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM

Abstract
INTRODUCTION: The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro.
METHODS: BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h).
RESULTS AND DISCUSSION: BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts.

PMID: 28623970 [PubMed - in process]

Categories: Publications from UCDPER Members

Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug.

Jeffrey D. Laskin, Ph.D. - Sun, 06/18/2017 - 02:00

Related Articles

Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug.

Exp Mol Pathol. 2016 Jun;100(3):522-31

Authors: Composto GM, Laskin JD, Laskin DL, Gerecke DR, Casillas RP, Heindel ND, Joseph LB, Heck DE

Abstract
Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures.

PMID: 27189522 [PubMed - indexed for MEDLINE]

Categories: Publications from UCDPER Members

The Network Structure of Posttraumatic Stress Symptoms in Children and Adolescents Exposed to Disasters

Environmental/Disaster News - Fri, 06/16/2017 - 02:00

Journal of the American Academy of Child & Adolescent Psychiatry